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Figure S1. Illustration of our grid NeRF that decodes color and
density from a feature vector queried from latent grids. We use
latent grids with five scales but only two are visualized for clarity.

This supplementary material includes additional technical
explanations and experimental results that are not in the main
paper due to space limit.

S1. Supportive Explanations

NeRF grid configurations. Our NeRF representation
rests on latent feature grids that can be efficiently decoded
into color and density with a small MLP. We use the im-
plementation from [10] for latent grids that correspond to
the space of a unit cubic. In particular, we adopt the multi-
resolution representation consisting of five latent grids, each
with size (2x2x2), (4x4x4), (8x8x8), (16x16x16), and
(32x32x32). Each vertex on the grid stores a 4-dimensional
learnable feature vector. Given a sampled point inside the
3D object box, we use its size-normalized NOCS to query
each latent grid by trilinear interpolation, resulting in a total
of 5x4=20 dimensional feature vector after concatenation.
The feature vector is passed to an MLP containing three 64-
channel hidden layers with ReLU activation, yielding color
and density. We illustrate this procedure in Fig. S1, with two
resolution scales for clarity of visualization. For each batch
iteration during training, we randomly sample 768 rays per
object to enforce rendering losses.

Base 3D detector. It is worth stressing that the training of
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Figure S2. Structure of our image-conditioned network con-
sisting of a backbone feature extraction network and a number of
regression heads for different predictions.

NeurOCS is agnostic to the base 3D detector — NeurOCS
takes ground truth 2D boxes as input in training, and during
inference it is combined with a base 3D detector of choice,
taking its 2D boxes as input. Also note the object size pre-
diction is not needed during training. This makes NeurOCS
a standalone NOCS-based framework that can be flexibly
combined with different base 3D detectors. In addition to
DID-M3D, we show in next section that it also works well
with another state-of-the-art 3D detector DEVIANT [6]. As
future work, we envision that NeurOCS has potential to
improve Lidar-based 3D detection as well.

Network architecture. We illustrate our network pathways
in Fig. S2. We crop objects using 2D boxes and resize to
256 x 256 as input to our backbone network, a ResNet50
pretrained on ImageNet. We extract its 8 x 8 feature map at
the fourth layer, upsample to 64 x 64 by bilinear interpolation,
and then pass to a few regression heads. We apply three
separate heads to predict the NOCS map, the uncertainty map
(detailed later), and the foreground object mask, each using
three 1x1 convolutional layers with BachNorm and ReLu



Figure S3. Illustration of our ground-truth object mask. The
white, black, and gray pixels indicate foreground, background, and
unknown regions, respectively.

Module Loss Name Type | Weight Region Note
Occupancy Loss L2 1 FG + BG
RGB Loss L2 3 FG
NeRF KL Pivergence KL 1 - .
Lidar Loss L2 0.5 FG & Valid Optional
LiComp Loss L2 0.2 FG & Valid Optional
Dense Prior L1 0.002 3D Grid Conditional
FG Loss L2 1 All
Image ToU Score Loss L2 1 -
Reproj. Loss L2 2 FG
Both NOCS Consistency | L2 1 FG & Occ

FG = Foreground, BG = Backgroud

Table S1. A summary of our losses, including NeRF losses and
image-conditioned regression losses. See text for details.

activation. The shape and color coefficients are predicted by
a 3-layer MLP with the average-pooled feature map as input.
The score prediction head uses two 1x1 convolutional layers
followed by average-pooling and a linear layer to regress a
confidence score. It takes as input the object feature map,
the predicted NOCS map, the predicted foregound object
mask, and the Jacobian map.

Foreground object masks. We demonstrate our ground-
truth object mask with two example objects in Fig. S3.
The foreground and background regions provide shape con-
straints in our occupancy loss akin to the machinery of shape-
from-silhouette. Pixels on other object instances are ignored
as they are likely occluding objects that obscure the shape
boundary.

Shape Regularization. We demonstrate the impact of
the KL divergence loss in Fig. S4(a), illustrate the visual
hull ambiguity and that the dense prior improves the shape
Fig. S4(b).

Loss. We jointly train the image-conditioned regression net-
work and the NeRF by combining all their losses. In Tab. S1,
we detail the training losses composition, including their
weight, application scope and condition. The occupancy
loss is applied on foreground and background, while skip-
ping unknown regions. The RGB loss is only applied to the
foreground region. If a point from Lidar or its completion re-
sides inside the object 3D box and projects to the foreground
region, it induces a valid NOCS point for supervision. The
dense prior loss is applied to randomly sampled points in-
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Figure S4. Shape Regularizations. (a) An actual example showing
the KL loss yields cleaner shape. (b) An illustration on the visual
hull ambiguity and the impact of the dense shape prior.

3D APy - Val BEV APy - Val
Method Venue Easy Mod Hard | Easy Mod Hard
DEVIANT [6] ECCV22 | 25.09 16.99 1530 | 33.69 23.10 20.67

NeurOCS-M + [6] CVPR23 | 27.70 1892 16.28 | 3531 25.11 21.87
NeurOCS-MLC + [6] | CVPR23 | 27.83 1892 16.20 | 35.14 2477 2143

Table S2. Evaluation with DEVIANT [6] as our base 3D detector.

3D APy - Test BEV APy - Test

Method ‘ Venue Easy Mod Hard | Easy Mod Hard
LPCG [11] | ECCV22 | 25.56 17.80 1538 | 3596 24.81 21.86
CMKD [4] | ECCV22 | 2855 18.69 16.77 | 38.98 25.82 22.80
NeurOCS | CVPR23 | 29.89 1894 1590 | 37.27 2449 20.89

Table S3. Additional comparison with LPCG [11] and CMKD [4]
on KITTI test set.

side the 3D latent grid; and it is only applied in absence
of Lidar/LiComp losses, hence marked as conditional. The
NOCS consistency loss is applied to foreground regions and
weighted by a detached occupancy map rendered from NeRF.
We also add an unsupervised reprojection loss [2], and sim-
ilarly to [2] we learn a per-pixel aletoric uncertainty map

(0, 0y) for the NOCS projection on image in both horizon-

|Ap,|?
(e

tal and vertical diction, by optimizing ‘=2z +log 02, where

|Ap,|? indicates the reprojection error in 2 direction; same
applies to . The confidence (-, Gl—y) is multiplied with
the foreground probability to weigh each pixel in PnP opti-
mization, which also optimizes the reprojection error loss.
The weights combining the losses are chosen empirically
based on the validation set, and we note that the performance
is not sensitive to these parameters in practice.

Data augmentation. During the training, we apply data aug-
mentation on the ground truth 2D boxes, including flipping
and bounding box perturbation similar to [8].

S2. Additional Experimental Results
S2.1. Additional Results on KITTI

Base 3D detector. We demonstrated good performance with
DID-M3D [12] as our base 3D detector in the main paper.
Here, we evaluate performance by combining NeurOCS with



PnP Only + Fusion
Easy Moderate Hard | Easy Moderate Hard
RLC | 27.55 18.27 15.75 | 30.79 20.78 17.37
RL 27.50 18.36 15.77 | 30.45 20.71 17.45
RC 27.08 18.10 15.28 | 30.74 20.67 17.41
R 22.59 15.81 13.07 | 27.26 19.10 16.48

Table S4. APsp from directly training with raw depth supervision
from Lidar and its completion w/o NeRF.

another base 3D detector, namely DEVIANT [6]. As can be
seen in Tab. S2, NeurOCS improves over DEVIANT with
the scale fusion, whether the shape is trained with mask only
or with additional Lidar supervision. This further consoli-
dates the value of NeurOCS as a standalone shape-based 3D
localization framework.

Additional comparison on KITTI benchmark. In the main
paper, we primarily compare with existing methods that rely
on the original 3D box annotations from KITTI to train the
3D detector. However, it is also worth discussing recent
works LPCG [11] and CMKD [4] that improve performance
by leveraging additional pseudo ground truth from extra
large-scale unlabeled sequences with Lidar. While this line
of work is orthogonal to ours, we provide performance com-
parison in Tab. S3. As shown, the accuracy from NeurOCS
is superior to LPCG and comparable to CMKD.

w/o NeRF results. In the main paper, we have compared the
PnP results from our NeRF-based method against directly
training with raw depth supervision from Lidar and its com-
pletion w/o NeRF. Here, we report in Tab. S4 the full APs;p
for the “w/o NeRF” setting including the results after scale
fusion. Note that we always include the reprojection error
loss as it was shown helpful [2] for NOCS learning. As can
be seen, the direct training yields good performance thanks
to the efficacy of our framework, but lags behind the results
when NeRF is applied to serve as a bridge between the raw
Lidar data and the NOCS network.

Network architectures. We study the performance with
different backbone network architectures and different NeRF
configurations. Our default setup uses ResNet50 and the
grid NeRF with five resolution scales as described in Sec. S1.
We first change ResNet50 to ResNet18 and ResNet34, only
observing slightly degraded performance. This indicates
NeurOCS does not heavily rely on powerful backbone, and
a lighter backbone is viable in latency-sensitive applications.
Next, we reduce the number of NeRF scales to 4 (finest scale
with 16 x 16 x 16 grids) and 3 (finest scale with 8 x 8 x 8
grids), where the performance remains good. We further
substitute the grid-based NeRF to a MLP-based NeRF with
positional encoding same as [5]. In practice, we observe the
MLP-based NeRF leads to nearly two times slower training
process and higher memory occupancy due to its large MLP
network, while the performance drops slightly.

PnP Only + Fusion

Module Model
Easy Moderate Hard | Easy Moderate Hard
Default | ResNet50+5 Grid Scales | 27.92 18.49 15.78 | 31.24 21.01 17.70
ResNet18 27.04 18.21 15.39 | 30.18 20.80 17.44

Backbone

ResNet34 27.00 18.19 15.47 | 30.39 20.71 17.38
4 Grid Scales 27.80 18.49 15.81 | 30.93 20.90 17.56
NeRF 3 Grid Scales 28.02 18.62 15.89 | 31.16 21.02 17.64
CodeNeRF 27.41 18.23 15.10 | 30.53 20.77 17.45

Table S5. Evaluation with APs;p on different backbone network
architectures and NeRF configurations.
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Figure S5. Effect of Fusion Weight. Lower weight value indicates
lower impact from direct depth estimation and higher impact from
scale in PnP solution.

Scale fusion. In the main paper, our scale fusion is described
as an averaging between scales in PnP and network-predicted
object depth. In fact, we have studied the generic linear
combination of the two, i.e.,

p_ W dpreg + (1 —w) - [t].

S = S.
2'[t]z (S1)

g W deat (=) [0

B 2 [t]z .

where w is a balancing weight. We study different weight
values in Fig. S5, and empirically found 0.5 (i.e. averaging)
gives the overall best result, which indicates similar relia-
bility for direct depth prediction and object size prediction
that gives the metric scale in PnP solutions. We have also
attempted to learn the fusion using networks akin to [7], but
found this scheme to be superior in practice.

Visual scope. In the main paper we have studied the behav-
ior of object-centric and scene-centric training in NeurOCS
with NeRF. Here, we study the performance when training
NOCS with Lidar directly without using NeRF-rendered su-
pervision. This allows us to focus on the image-conditioned
regression branch, although we observe the NeRF branch be-
haves similarly in the two schemes. The results are shown in
Tab. S6. In addition to the vanilla scene-centric scheme, we
replace its NOCS map prediction with the one from object-
centric scheme, while keeping its object mask and score
prediction; this setting is denoted as “scene-centric++". As
can be seen, while a performance gap exists between the
object-centric and scene-centric training, scene-centric++



PnP Only + Fusion DID-M3D NeurOCS-MLC
Easy Moderate Hard | Easy Moderate Hard Pedestrai Easy Moderate Hard | Easy Moderate Hard
object-centric | 27.92 1849 1578 | 31.24 2101  17.70 edestraian | . - 8.75 715 | 12.13 9.1 7.40
Sce(‘;;i;;ee‘t‘)mc 2639  17.62 1461 | 29.40 2020  16.94
scene-centric++ Table S8. APzp on the pedestrian class in KITTI validation set.
(resnet) 25.30 18.02 15.64 | 28.54 20.60 17.57
scene-centric-L [ 595 1735 1451 | 2057 2039 17.06 Difficulty Method APsp APHip
(resnet) All | 0-30m  30-50m 50m-co | All | 0-30m 30-50m  50m-co
SCene-Centric | o5 o 16.89 14.03 | 28.48 19.34 16.26 PCT[15] 089 | 3.08 027 007 |088| 315 027 007
(dla) i : i : : : MonolSG[9] | 097 | 465 055 010 [095| 459 053 009
scene-centric++ 26.00 18.05 15.81 | 29.25 20.60 17.55 Level_l DEVIANT [6] | 2.69 | 6.95 0.99 0.02 | 267 | 690 0.98 0.02
(dla) : : : : : : NeurOCS (PnP) | 1.67 | 428 074 002 | 1.66 | 426 073 0.02
NewrOCS (Fusion) | 244 | 635 097 004 |243| 631 097 004
Table S6. Additional study on the benefits of object-centric training. PCTLI3] 0.66 | 318 027 007 | 0.66 | 315 026 007
MonoJSG[9] | 091 | 464 055 009 |089| 465 053 009
Level 2 DEVIANT [6] 2.52 6.93 0.95 0.02 2.50 6.87 0.94 0.02
PoP onf Toel NewrOCS (PnP) | 156 | 426 071 002 | 155 | 424 070 002
nr only + Fusion NewrOCS (Fusion) | 229 | 632 094 003 |228| 629 093 003

Easy Moderate Hard | Easy Moderate Hard
NeurOCS-MLC | 28.06 18.52 15.36 | 31.20 20.99 17.55
NeurOCS-ML | 28.23 18.58 15.49 | 30.79 20.80 17.48
NeurOCS-MC | 28.07 18.69 15.82 | 30.93 20.87 17.46
NeurOCS-M 27.66 18.42 15.54 | 30.66 20.77 17.49

Table S7. APs;p from NeurOCS without using the uncertainty
map.

Input object in front view

Shape rendering in front view Shape rendering in back view

Figure S6. Shape visualization for an example object instance from
the validation set.

largely reduces the gap especially for the Moderate and Hard
cases. This demonstrates the benefits of object-centric train-
ing towards more accurate NOCS map predictions. We also
increase the network capacity in the scene-centric NOCS
regression head by doubling its number of layers, but do
not observe consistent improvements, as shown in “scene-
centric-L”. Furthermore, we evaluate scene-centric scheme
with DLA as the backbone, and similar results are observed.
Uncertainty map. As aforementioned, we learn a uncertain
map for NOCS predictions using the reprojection loss, for
both our w/ NeRF settings (NeurOCS) and those w/o NeRF
baselines. We found that including the uncertainty map in the
weight of PnP optimization improves the final performance.
Here, we report in Tab. S7 the accuracy of NeurOCS in the
case of without using it.

Note on NeRF. While the shape rendering from NeRF is
only required during training, we observe that it also works
well for the validation set. We demonstrate this in Fig. S6
with an example object instance from the validation set.
Qualitative results. We demonstrate the output of NeurOCS
by running on KITTI raw sequences that have no overlap
with the training set. In particular, the sequences are from
the KITTI-Tracking subset where ground truth 3D boxes are
provided for every frame. These results are shown in the

Table S9. Evaluation on Waymo dataset with JoU >0.7.

attached supplementary video.

Other object classes. We report in Tab. S8 the results on
the pedestrian class; we omit cyclists as their instance masks
are not provided by [3]. As shown, NeurOCS improves
upon its base detector DID-M3D despite the non-rigid object
topology, further indicating its robustness.

Computation efficiency. The runtime of our framework
without TTA costs 50ms on average for each frame in KITTI
object dataset on a single RTX2080. The ResNet50 back-
bone takes about 15ms and the pose solver costs 35ms, while
the TTA doubles the backbone runtime.

S2.2. Evaluation on Waymo

Here, we follow [6, 9, 15] to train on the Waymo [14]
dataset, only using its front camera for the monocular 3D
detection task. The Waymo dataset contains 798 training
sequences and 202 validation sequences, each with around
200 images. The objects are split into two difficulty level:
“Level_1" and “Level 2", depending on the number of Lidar
points within the object bounding box. For evaluation, we
adopt the official metrics - 3D average precision APsp and
3D average precision weighted by heading APH3p. Be-
sides evaluating all objects together, we also evaluate for
objects separately in different distance ranges, including O-
30m, 30-50m, and 50m-oco. We use the panoptic annotations
in Waymo to extract instance masks, which are however pro-
vided only for a subset of images - as a result we train with
12128 images instead of 52386 as in [6,9, 15]. Since DID-
M3D [12] does not release the code for Waymo, we instead
use DEVIANT [6] as our base 3D detector. As shown in
Tab. S9, despite slightly lagging behind [6], our method over-
all outperforms other recent methods [9, 15] even without
fusion. This indicates the promising potential of our method
towards 3D detection in more diverse and complex environ-
ment. Empirically, we observe that the 3D object bounding
box annotations in Waymo are often not tight. This may
affect the learning on object size and further on the local-
ization accuracy of NeurOCS, since the object size directly



Mean Depth MAE Median Depth MAE

range 0-20m  20-40m >40m | 0-20m 20-40m >40m

(# of obj.) (596) (719) (16) (596) (719) (16)
DEVIANT [6] 0.757 1.603  4.499 | 0.660 1.270  4.590
NeurOCS-PnP 0.746  2.160  6.719 | 0.575 1.780  6.725
NeurOCS-Fusion | 0.602 1.714  5.624 | 0.460 1.180 5415
range 0-20m  20-40m >40m | 0-20m  20-40m >40m

(# of obj.) (1273)  (2173)  (858) | (1273) (2173)  (858)
DID-M3D [12] 0.665 1.713  3.373 | 0.510 1.400  2.740
NeurOCS-PnP 0.801 2396  5.671 | 0.650 1.950 5275
NeurOCS-Fusion | 0.637 1.721 3.711 | 0.480 1.380  3.150

Table S10. Cross-dataset evaluation on NuScenes. The depth
MAE:s are reported for recalled objects in different ranges, each
containing # objects as shown.

impacts the object distance in the PnP optimization. Further,
the rolling shutter effect [16] in the camera used by Waymo
may impact our geometric optimization which assumes the
image is taken from a global shutter camera. We leave the
handling of these challenges for performance improvements
as the future work.

S2.3. Evaluation on NuScenes

While cross-dataset generalization is not the main goal
of our work, we follow DEVIANT [6] to perform evalua-
tion in NuScenes dataset [1] to understand its generalization
capability. Specifically, we train on the training split of the
KITTI training set and evaluate on all 6019 frontal images in
the NuScenes validation set, using the mean absolute error
(MAE) [6, 13] of the depth of the boxes. This is computed
only on recalled objects (2D IoU>0.7) where the ground
truth depth can be retrieved; strictly speaking, the 3D error
measured by depth MAE from two methods are compara-
ble only when using the same set of recalled objects. We
first compare with DEVIANT as shown in Tab. S10, where
we use DEVIANT as our base detector to have the same
set of recalled objects. As can be seen, while DEVIANT
achieves good performance due to its special design in depth-
equivariant architecture, NeurOCS yields reasonable perfor-
mance with PnP alone, and its fusion with DEVIANT leads
to improvements in some cases especially for nearby objects.
Similar observations are obtained when using DID-M3D
as the base detector. These results indicate the promising
potential of NeurOCS in generalization due to its underly-
ing geometric principles, especially for the near field where
the PnP solution is less sensitive to the error in object size
prediction. Further explorations towards improving its gen-
eralization capability remain our future work.
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